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Given integers n ≥ k ≥ 1, let s(n, k) be the Stirling number of the first
kind, i.e., the number of permutations of {1, . . . , n} with exactly k disjoint
cycles, and define H(n, k) :=

∑
1/(i1 · · · ik), where the sum is extended over

all integers 1 ≤ i1 < · · · < ik ≤ n. These quantities are related by the
identity H(n, k) = s(n+ 1, k + 1)/n!.

Several researchers [1, 2, 3, 4, 5, 7] have studied their p-adic valuations.
In particular, it is an open conjecture that, for each prime p and positive
integer k, there exist only finitely many n such that p divides H(n, k). In
this talk we shall illustrate the following result:

Theorem [L. and Sanna [6]]. For each prime p, integer k ≥ 2, and
x ≥ (k − 1)p, there exists a constant c = c(p, k) > 0 such that

νp(H(n, k)) < −c log(n)

for all positive integers n ∈ [(k − 1)p, x] whose base p representations start
with the base p representation of k − 1, but at most 3x0.835 exceptions.

We also provide a description of ν2(H(n, 2)) in terms of an infinite binary
sequence.
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